Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Monoclinic polymorph of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1*H*-purine-2,6dione

Dmitrijs Stepanovs and Anatoly Mishnev*

Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia Correspondence e-mail: mishnevs@osi.lv

Received 21 September 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; T = 190 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.163; data-to-parameter ratio = 16.7.

The structure of the title compound, pentoxifylline, $C_{13}H_{18}N_4O_3$, has been previously characterized as a triclinic polymorph [Pavelčík *et al.* (1989). *Acta Cryst.* C45, 836–837]. We have discovered the monoclinic form. There are no strong hydrogen bonds in the crystal structure, rather, moderate C– $H \cdots O$ hydrogen bonds are present, which serve to stabilize the three-dimensional architecture.

Related literature

For general background to pentoxifylline, see Dettelbach & Aviado (1985). For the structure and the nature of the hydrogen bonding in the triclinic polymorph, see: Pavelčík *et al.* (1989); Gilli (2002).

Experimental

Crystal data

b = 17.410 (8) Å c = 7.956 (3) Å $\beta = 90.89 (2)^{\circ}$ $V = 1349.4 (12) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer	1817 reflections with $I > 2\sigma(I)$
5073 measured reflections	$R_{\rm int} = 0.053$
3103 independent reflections	
5073 measured reflections 3103 independent reflections	$R_{\rm int} = 0.053$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.066 & 184 \text{ parameters} \\ wR(F^2) &= 0.163 & H\text{-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\text{max}} &= 0.24 \text{ e } \text{ Å}^{-3} \\ 3065 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.20 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$C2-H2\cdots O18^{i}$	0.93	2.39	3.206 (4)	147		
$C15 - H15B \cdots O19^{ii}$	0.96	2.60	3.439 (4)	147		
$C16-H16A\cdots O18^{i}$	0.96	2.55	3.395 (4)	148		
Symmetry codes: (i) $-x - 1$, $y + \frac{1}{2}$, $-z - \frac{1}{2}$; (ii) $-x - 2$, $y - \frac{1}{2}$, $-z - \frac{1}{2}$.						

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *HKL SCALEPACK* (Otwinovski & Minor, 1997); data reduction: *HKL DENZO* (Otwinovski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the European Regional Development Fund (No. 2DP/ 2.1.1.1.0/10/APIA/VIAA/066).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2793).

References

Dettelbach, H. R. & Aviado, D. M. (1985). J. Clin. Pharmacol. 25, 8-26.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gilli, G. (2002). *Fundamentals of Crystallography*, edited by C. Giacovazzo, pp. 585–666. Oxford University Press.
- Nonius (1997). KappaCCD Śerver Software. Nonius BV, Delft, The Netherlands.
- Otwinovski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pavelčík, F., Sivý, J., Havránek, E., Sivý, P., Komanová, E. & Nevýdal, J. (1989). Acta Cryst. C45, 836–837.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

 $0.40 \times 0.30 \times 0.05 \text{ mm}$

T = 190 K

supplementary materials

Acta Cryst. (2011). E67, o2851 [doi:10.1107/S1600536811040232]

Monoclinic polymorph of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione

D. Stepanovs and A. Mishnev

Comment

The background to pentoxifylline has been summarized (Dettelbach & Aviado, 1985). The polymorph structure **II** differs from the known form **I** Pavelčík *et al.*, 1989; Gilli, 2002) in their molecular conformation and the packing of the molecules in the lattice. The bond lengths of forms **I** and **II** are close to their standard values, but torsion angle N7—C10—C11—C12 (75.6 (3)° for **I** and 175.8 (2)° for **II**) and some bond angles significantly differ: N7—C10—C11 (114.2 (2)° for **I** and 111.9 (2)° for **II**), C10—C11—C12 (115.4 (2)° for **I** and 115.4 (2)° for **II**), C11—C12—C13 (111.0 (2)° for **I** and 114.1 (2)° for **II**). In the crystal structure of **II**, the molecules are connected by means of C—H···O hydrogen bonds, Table 1.

Experimental

Title compound was obtained by recrystallization of Trental tablets, produced by Sanofi-Aventis Deutschland GmbH. Crystals were grown by slow evaporation from dichloromethane at temperature range 308–315 K.

Refinement

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.97 Å and refined as riding on their parent atoms with U_{iso} (H) = $1.5U_{eq}$ (C) for methyl groups and U_{iso} (H) = $1.2U_{eq}$ (C) for others.

Figures

Fig. 1. The molecular structure of the title compound, **II**, showing 50% probability ellipsoids and hydrogen atoms are shown as small spheres of arbitrary radii.

3,7-Dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione

Crystal data

C₁₃H₁₈N₄O₃ $M_r = 278.31$ Monoclinic, $P2_1/c$ a = 9.743 (6) Å b = 17.410 (8) Å c = 7.956 (3) Å $\beta = 90.89$ (2)° V = 1349.4 (12) Å³ $D_x = 1.370 \text{ Mg m}^{-3}$ Melting point: 365 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6273 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 190 KPlate, colourless

Z = 4	
F(000) = 59	2

Data collection

Nonius KappaCCD diffractometer	1817 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.053$
graphite	$\theta_{\text{max}} = 27.5^\circ, \ \theta_{\text{min}} = 2.4^\circ$
CCD scans	$h = -12 \rightarrow 12$
5073 measured reflections	$k = -22 \rightarrow 19$
3065 independent reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.150$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0525P)^2 + 0.5672P]$ where $P = (F_o^2 + 2F_c^2)/3$
3065 reflections	$(\Delta/\sigma)_{\rm max} = 0.004$
184 parameters	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.4 \times 0.3 \times 0.05 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
O19	-0.79244 (18)	0.03718 (9)	-0.4841 (2)	0.0407 (5)
O18	-0.54702 (19)	-0.15692 (9)	-0.2345 (2)	0.0431 (5)
N7	-0.6688 (2)	-0.05902 (10)	-0.3550 (2)	0.0314 (5)
O20	-1.1444 (2)	-0.31616 (11)	-0.4130 (3)	0.0550 (6)
N1	-0.5641 (2)	0.14522 (11)	-0.3470 (2)	0.0337 (5)
N5	-0.4583 (2)	-0.03670 (11)	-0.2089 (2)	0.0350 (5)

C9	-0.5831 (2)	0.06649 (13)	-0.3380 (3)	0.0304 (5)
N3	-0.3878 (2)	0.09676 (12)	-0.1963 (3)	0.0380 (5)
C4	-0.4742 (2)	0.04006 (13)	-0.2463 (3)	0.0319 (6)
C10	-0.7740 (3)	-0.11505 (13)	-0.4085 (3)	0.0351 (6)
H10A	-0.7303	-0.1639	-0.4317	0.042*
H10B	-0.8180	-0.0973	-0.5116	0.042*
C6	-0.5568 (3)	-0.08839 (14)	-0.2631 (3)	0.0331 (6)
C13	-0.9288 (3)	-0.26965 (13)	-0.3170 (3)	0.0323 (6)
H13A	-0.8532	-0.2731	-0.3946	0.039*
H13B	-0.8920	-0.2790	-0.2049	0.039*
C14	-1.0310 (3)	-0.33177 (14)	-0.3593 (3)	0.0326 (6)
C12	-0.9861 (2)	-0.18878 (13)	-0.3236 (3)	0.0361 (6)
H12A	-1.0633	-0.1856	-0.2484	0.043*
H12B	-1.0203	-0.1787	-0.4366	0.043*
C15	-0.9876 (3)	-0.41325 (14)	-0.3319 (3)	0.0412 (6)
H15A	-1.0331	-0.4457	-0.4128	0.062*
H15B	-1.0117	-0.4290	-0.2206	0.062*
H15C	-0.8900	-0.4173	-0.3446	0.062*
C17	-0.3361 (3)	-0.06489 (15)	-0.1159 (3)	0.0427 (6)
H17A	-0.2675	-0.0805	-0.1942	0.064*
H17B	-0.3612	-0.1079	-0.0474	0.064*
H17C	-0.3002	-0.0246	-0.0456	0.064*
C8	-0.6905 (3)	0.01842 (13)	-0.4012 (3)	0.0324 (6)
C11	-0.8821 (3)	-0.12644 (14)	-0.2754 (3)	0.0388 (6)
H11A	-0.9303	-0.0784	-0.2583	0.047*
H11B	-0.8373	-0.1403	-0.1700	0.047*
C16	-0.6522 (3)	0.20142 (14)	-0.4321 (3)	0.0420 (6)
H16A	-0.6097	0.2511	-0.4268	0.063*
H16B	-0.7394	0.2034	-0.3778	0.063*
H16C	-0.6653	0.1867	-0.5475	0.063*
C2	-0.4478 (3)	0.15899 (15)	-0.2608 (3)	0.0386 (6)
H2	-0.4118	0.2081	-0.2469	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O19	0.0381 (11)	0.0348 (10)	0.0490 (10)	-0.0019 (8)	-0.0061 (8)	0.0061 (8)
O18	0.0530 (12)	0.0232 (9)	0.0530 (11)	0.0008 (8)	-0.0011 (8)	0.0021 (8)
N7	0.0359 (12)	0.0224 (10)	0.0358 (11)	-0.0046 (9)	0.0003 (8)	-0.0003 (8)
O20	0.0438 (13)	0.0385 (11)	0.0818 (14)	-0.0051 (9)	-0.0226 (10)	-0.0014 (10)
N1	0.0327 (12)	0.0231 (10)	0.0452 (12)	0.0017 (9)	0.0017 (9)	0.0010 (8)
N5	0.0334 (12)	0.0288 (11)	0.0428 (12)	0.0007 (9)	-0.0018 (9)	0.0033 (9)
C9	0.0322 (13)	0.0217 (11)	0.0374 (13)	-0.0010 (10)	0.0039 (10)	0.0004 (10)
N3	0.0362 (12)	0.0304 (11)	0.0473 (12)	-0.0030 (10)	-0.0003 (9)	-0.0037 (9)
C4	0.0313 (14)	0.0261 (12)	0.0384 (13)	0.0001 (11)	0.0032 (10)	-0.0009 (10)
C10	0.0425 (15)	0.0245 (12)	0.0383 (13)	-0.0080 (11)	0.0011 (11)	-0.0020 (10)
C6	0.0370 (14)	0.0279 (13)	0.0346 (13)	0.0003 (11)	0.0044 (10)	-0.0021 (10)
C13	0.0356 (14)	0.0267 (12)	0.0345 (12)	-0.0052 (10)	-0.0001 (10)	0.0001 (10)

supplementary materials

C14	0.0366 (15)	0.0322 (13)	0.0290 (12)	-0.0029 (11)	-0.0008 (10)	-0.0002 (10)
C12	0.0335 (14)	0.0284 (13)	0.0465 (14)	-0.0009 (11)	0.0060 (11)	-0.0015 (11)
C15	0.0443 (16)	0.0282 (13)	0.0510 (15)	-0.0050 (12)	-0.0026 (12)	0.0002 (11)
C17	0.0404 (16)	0.0372 (14)	0.0503 (16)	0.0079 (12)	-0.0051 (12)	0.0051 (12)
C8	0.0332 (14)	0.0294 (13)	0.0347 (13)	0.0002 (11)	0.0061 (11)	0.0011 (10)
C11	0.0453 (16)	0.0253 (12)	0.0459 (15)	-0.0048 (11)	0.0095 (11)	-0.0065 (11)
C16	0.0392 (15)	0.0289 (14)	0.0578 (16)	0.0077 (11)	-0.0040 (12)	0.0066 (11)
C2	0.0322 (15)	0.0328 (14)	0.0509 (15)	-0.0039 (11)	-0.0013 (11)	-0.0039 (12)
Geometric para	ameters (Å, °)					
O19—C8		1.228 (3)	C13–	C12	1.51	5 (3)
O18—C6		1.218 (3)	C13–	-H13A	0.97	00
N7—C6		1.401 (3)	C13–	-H13B	0.97	00
N7—C8		1.413 (3)	C14-	C15	1.49	5 (3)
N7—C10		1.473 (3)	C12-	C11	1.53	0 (3)
O20—C14		1.209 (3)	C12-	-H12A	0.97	00
N1—C2		1.337 (3)	C12-	-H12B	0.97	00
N1—C9		1.385 (3)	C15–	-H15A	0.96	00
N1-C16		1.461 (3)	C15–	-H15B	0.96	00
N5—C4		1.377 (3)	C15–	-H15C	0.96	00
N5—C6		1.380 (3)	C17–	-H17A	0.96	00
N5—C17		1.476 (3)	C17–	–H17B	0.96	00
С9—С4		1.359 (3)	C17–	-H17C	0.96	00
С9—С8		1.426 (3)	C11-	-H11A	0.97	00
N3—C2		1.330 (3)	C11–	-H11B	0.97	00
N3—C4		1.353 (3)	C16–	-H16A	0.96	00
C10-C11		1.518 (3)	C16–	-H16B	0.96	00
C10—H10A		0.9700	C16–	-H16C	0.96	00
C10—H10B		0.9700	C2—	H2	0.93	00
C13—C14		1.505 (3)				
C6—N7—C8		126.6 (2)	C13–	-C12-H12A	108.	7
C6—N7—C10		116.24 (19)	C11–	-C12-H12A	108.	7
C8—N7—C10		117.1 (2)	C13–	C12H12B	108.	7
C2—N1—C9		105.3 (2)	C11–	-C12-H12B	108.	7
C2—N1—C16		127.2 (2)	H12A	—С12—Н12В	107.	6
C9—N1—C16		127.5 (2)	C14-	-C15-H15A	109.	5
C4—N5—C6		119.3 (2)	C14–	-C15-H15B	109.	5
C4—N5—C17		121.2 (2)	H15A	—С15—Н15В	109.	5
C6—N5—C17		119.4 (2)	C14-	-C15—H15C	109.	5
C4—C9—N1		105.0 (2)	H15A	—С15—Н15С	109.	5
C4—C9—C8		123.6 (2)	H15E	G-C15-H15C	109.	5
N1—C9—C8		131.4 (2)	N5—	C17—H17A	109.	5
C2—N3—C4		102.3 (2)	N5—	C17—H17B	109.	5
N3—C4—C9		112.8 (2)	H17A	—С17—Н17В	109.	5
N3—C4—N5		125.2 (2)	N5—	С17—Н17С	109.	5
C9—C4—N5		121.9 (2)	H17A	—С17—Н17С	109.	5
N7-C10-C11		111.85 (19)	H17E	— С17—Н17С	109.	5
N7—C10—H10	A	109.2	O19–	C8N7	120.	7 (2)

C11—C10—H10A	109.2	O19—C8—C9	128.1 (2)
N7—C10—H10B	109.2	N7—C8—C9	111.2 (2)
C11—C10—H10B	109.2	C10-C11-C12	112.4 (2)
H10A—C10—H10B	107.9	C10-C11-H11A	109.1
O18—C6—N5	121.9 (2)	C12—C11—H11A	109.1
O18—C6—N7	120.9 (2)	C10-C11-H11B	109.1
N5—C6—N7	117.2 (2)	C12—C11—H11B	109.1
C14—C13—C12	114.7 (2)	H11A—C11—H11B	107.8
C14—C13—H13A	108.6	N1—C16—H16A	109.5
C12—C13—H13A	108.6	N1—C16—H16B	109.5
C14—C13—H13B	108.6	H16A—C16—H16B	109.5
С12—С13—Н13В	108.6	N1—C16—H16C	109.5
H13A—C13—H13B	107.6	H16A—C16—H16C	109.5
O20-C14-C15	121.3 (2)	H16B—C16—H16C	109.5
O20—C14—C13	121.0 (2)	N3—C2—N1	114.6 (2)
C15—C14—C13	117.6 (2)	N3—C2—H2	122.7
C13—C12—C11	114.1 (2)	N1—C2—H2	122.7
C2—N1—C9—C4	-0.3 (2)	C8—N7—C6—O18	-177.9 (2)
C16—N1—C9—C4	179.9 (2)	C10-N7-C6-O18	2.0 (3)
C2—N1—C9—C8	177.9 (2)	C8—N7—C6—N5	1.3 (3)
C16—N1—C9—C8	-2.0 (4)	C10—N7—C6—N5	-178.80 (19)
C2—N3—C4—C9	0.1 (3)	C12—C13—C14—O20	8.2 (3)
C2—N3—C4—N5	-179.1 (2)	C12-C13-C14-C15	-171.5 (2)
N1C9C4N3	0.1 (3)	C14—C13—C12—C11	178.31 (19)
C8—C9—C4—N3	-178.2 (2)	C6—N7—C8—O19	179.1 (2)
N1-C9-C4-N5	179.3 (2)	C10-N7-C8-O19	-0.8 (3)
C8—C9—C4—N5	1.0 (4)	C6—N7—C8—C9	-1.5 (3)
C6—N5—C4—N3	177.8 (2)	C10—N7—C8—C9	178.54 (19)
C17—N5—C4—N3	-3.8 (4)	C4—C9—C8—O19	179.7 (2)
C6—N5—C4—C9	-1.3 (3)	N1-C9-C8-O19	1.8 (4)
C17—N5—C4—C9	177.1 (2)	C4—C9—C8—N7	0.4 (3)
C6—N7—C10—C11	87.7 (2)	N1—C9—C8—N7	-177.5 (2)
C8—N7—C10—C11	-92.3 (2)	N7-C10-C11-C12	-175.8 (2)
C4—N5—C6—O18	179.4 (2)	C13-C12-C11-C10	71.4 (3)
C17—N5—C6—O18	1.0 (3)	C4—N3—C2—N1	-0.3 (3)
C4—N5—C6—N7	0.2 (3)	C9—N1—C2—N3	0.3 (3)
C17—N5—C6—N7	-178.2 (2)	C16—N1—C2—N3	-179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$		
C2—H2···O18 ⁱ	0.93	2.39	3.206 (4)	147		
C15—H15B…O19 ⁱⁱ	0.96	2.60	3.439 (4)	147		
C16—H16A…O18 ⁱ	0.96	2.55	3.395 (4)	148		
Symmetry codes: (i) $-x-1$, $y+1/2$, $-z-1/2$; (ii) $-x-2$, $y-1/2$, $-z-1/2$.						

Fig. 1

